A note on the scaling limits of contour functions of Galton-Watson trees
نویسندگان
چکیده
Recently, Abraham and Delmas constructed the distributions of super-critical Lévy trees truncated at a fixed height by connecting super-critical Lévy trees to (sub)critical Lévy trees via a martingale transformation. A similar relationship also holds for discrete Galton-Watson trees. In this work, using the existing works on the convergence of contour functions of (sub)critical trees, we prove that the contour functions of truncated super-critical Galton-Watson trees converge weakly to the distributions constructed by Abraham and Delmas.
منابع مشابه
Scaling limits of Markov branching trees, with applications to Galton-Watson and random unordered trees
We consider a family of random trees satisfying a Markov branching property. Roughly, this property says that the subtrees above some given height are independent with a law that depends only on their total size, the latter being either the number of leaves or vertices. Such families are parameterized by sequences of distributions on partitions of the integers, that determine how the size of a ...
متن کاملA Note on Conditioned Galton-watson Trees
We give a necessary and sufficient condition for the convergence in distribution of a conditioned Galton-Watson tree to Kesten’s tree. This yields elementary proofs of Kesten’s result as well as other known results on local limit of conditioned Galton-Watson trees. We then apply this condition to get new results, in the critical and sub-critical cases, on the limit in distribution of a Galton-W...
متن کاملRandom trees and applications
We discuss several connections between discrete and continuous random trees. In the discrete setting, we focus on Galton-Watson trees under various conditionings. In particular, we present a simple approach to Aldous’ theorem giving the convergence in distribution of the contour process of conditioned Galton-Watson trees towards the normalized Brownian excursion. We also briefly discuss applica...
متن کاملLocal limits of conditioned Galton-Watson trees: the infinite spine case
We give a necessary and sufficient condition for the convergence in distribution of a conditioned Galton-Watson tree to Kesten’s tree. This yields elementary proofs of Kesten’s result as well as other known results on local limits of conditioned Galton-Watson trees. We then apply this condition to get new results in the critical case (with a general offspring distribution) and in the sub-critic...
متن کاملLocal Limits of Conditioned Galton-watson Trees I: the Infinite Spine Case
We give a necessary and sufficient condition for the convergence in distribution of a conditioned Galton-Watson tree to Kesten’s tree. This yields elementary proofs of Kesten’s result as well as other known results on local limits of conditioned Galton-Watson trees. We then apply this condition to get new results in the critical case (with a general offspring distribution) and in the sub-critic...
متن کامل